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The paper contains a solution of Mayer’s problem for 

Pfaff’s equation with one free function, and is applicable to the 

selection of the climbing trajectory of a rocket to a given altitude 

with maximum speed. The indicated problem is formulated in Section 1, 

and it is shown that the problems of the rocket flight without in- 

duced drag and of its motion, with zero angle of attack, on a rigid, 

ideally smooth track, are reducible to it. It is proved that the 

formulated problem is a degenerate one. In Section 2 the variation 

is investigated and a general solution of the problem is given, as 

well as basic special cases. In Section 3 the application of the 

general solution to the problem of rocket climb yields the optimum 

trajectory. The case of the motion on a launching track [ramp] is 

considered separately. 

1. A series of problems concerning the determination of optimum 

regimes IprogrammesI of the motion of the center of gravity of a rocket 

in a resisting medium are reducible to the following problem of Mayer 

for Pfaff's equation. 

In the plane of the variables x2, x3 there is given a simply 

connected region a1 with a closed boundary ul'. 'lbere is to find, within 

ol, a piecewise smooth curve without multiple points yl( x2 = n,(r), 

n3 = z (f), o<r,<u 
i: 

with prescribed end points Al& 0~0 and B, E: olc 

such t at the value x,(l) of the function x16 1, determined along y1 by 

the equation 

and the initial value ~~(0) = xIA, be a maximum, and that the direction 

of the tangent to the space curve y(xi = nit7 1, O\<r < 1, i = 1,2,31 

at each of its points belong to a prescribed space bundle [pencil] 

w' (n,, x2, x,1 of admissible directions. Thereby, the functions 
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A degenerate variational problem and the climb of a space rocket 21 

Xi(Xl, X2’ x,) ( i = 1,2,3) are considered continuous, together with 
their partial derivatives and the function X1 f 0 for the values of the 
variables considered. 

It is not difficult to show that several other classes or problems 
are reducible to the one stated above. ‘lhe first class of problems con- 
cerns the optimum expenditure of fuel in rectilinear motions of. rockets 

such as, for example, the interrelated problems of reaching maximum 
altitude with given fuel consumption [II , of reaching a given altitude 
with least expenditure of fuel [ 2 1 , and of reaching maximum speed at 
prescribed altitude. 

Secondly, the general problem is reducible to the problems concern- 
ing optimum trajectories in the vertical plane for winged rockets with 
a prescribed thrust regime, but without taking into account, in the 
equations of motion, the second and higher powers of the angles of 
attack, in particular without taking into account induced drag. These 
are problems which have to do with such a determination of trajectories, 
that the expended fuel (or the flight duration) be a minimum for 
prescribed terminal values of altitude and speed [ 4 I , or that for 
prescribed flight duration the speed be a maximum at prescribed altitude, 
or that the flight altitude be a maximum under the condition that the 
flight time and the final speed are prescribed. 

‘lhirdly, problems on the motion of a rocket with zero angle of attack 
on a rigid, ideally smooth track in which the shape of the track curve 
is to be found are also reducible to the general problem. These are 
problems on the climb of a cosmic rocket on the launching track (or pad) 
in the absence of friction. The boundary parameters are in this case the 
parameters at the end of the track. 

To prove that the problems of the second class are reducible to the 
general problem, we consider the equation of motion of a rocket with 
given thrust regime, without taking into account the second and higher 
powers of the angle of attack (Fig. 1). 

du 
- = p-s0 X(u, y)---sin0 
dt 

2, Ft = “p + SO cry, (V, y) -g cos 0 

dy 
2i = 2, sin 0 

(1.2) 

(1.3) 

(1.4) 

Here ~1 is the angle of attack, @ is the angle between the tangent to 
the trajectory and the horizon, p is the ratio of the thrust P to the 
mass cl(t) Go/g, v is the speed of motion, y is the altitude of flight, 
X(v,y) is the frontal resistance and Y(v,y) = ~lY,(u,y) is the lift, 
Equations (1.2) to (1.4) contain 21, 6, y and 01 as unknown functions of 
time t. If one of them is given, the others may be determined from the 
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above equations, From the formal point of view, all these functions are 

mathematically on equal footing, and any one among them may be consider- 

ed as being free. However, physically free is only ~1, because the angle 

a(t) may be altered directly during flight in accordance with the 
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Y 
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X 

Fig. 1. 

prescribed program, while the other functions may be influenced only 

through CX( t ) . 

We should note now that ~1 does not enter into equation 

may be eliminated from (1.2) with the aid of (1.4). After 

elimination we obtain instead of (1.2) an equation of the 

which contains only v, t,y: 

pv du + 2‘ (? -- pp) dt + EL9 dy = 0, 

(1.2) and 0 

this 

type (1.1) 

(1.5) 

Equation (1.5) may be separated from the others and variational 

problems of the second type may be formulated independently of the other 

equations. In fact, these problems concern merely the variables v,t,y 

and if one of the functions v(t),y(t) is considered as free, and is 

prescribed in an arbitrary fashion, then the other may be determined 

from t1.5), without use of the other equations. Subsequently, if it 

should be necessary, O(t) ad a(t) may be found from (1.4) and (1.3). 

We also note that the condition 1 dyl < udt, which results from (1.4), 

is not taken into account at all in (1.5) and therefore this should be 

remembered in the formulation of the problem. This means that in the 

space v, t,y the motion from the point (v, t,y) may continue only within 

a local space angle o’ [formed by two planes] with the edge parallel to 

the v-axis and with sides inclined to the plane pconst through an 

angle t arc tan v, where the plus and minus signs correspond to climb 

and fall along the vertical, respectively. 

Now, the problem on the climb to a prescribed altitude with maximum 
velocity, for instance, may be formulated as follows. 

A function y(t) is to be found in such a manner that the value u(T) 



A degenerate variational problem and the climb of a space rocket 23 

of the function u(t) determined by the initial value V( t,) = u. and the 
equation (1.4) should be a maximum and that the conditions be satisfied 

Y = Yo for t = to, y = Yk for t=T (1.6) 

YO < Y < Yk for to<t&T (1.7) 

dt>O, -vdt<dy <vdt (1.S) 

Comparing this formulation with the general formulation for equation 

(1.11, we see that in fact this problem is reducible to the general one. 
Since other problems of the second type for equation (1.5) may be 
formulated in an analogous manner, their reducibility to the general 
problem is proved. 

To prove the reducibility of problems of the third type, we will show 
that the totality of motions corresponding to all possible values of 
functions cl(t) corresponds to the totality of motions with zero angle of 
attack on all possible ideally smooth and absolutely rigid tracks of 

Fig. 2. 

constraint (Fig.2). In fact, the first and the third equation of motion 
coincide in this case with (1.2) and (1.4), and the second equation of 
this motion 

Vd> -_N 
dt - 

-gcose 

is identical with (1.31, if the reaction of constraint is 

N=a ( P+ -&Y1‘ I 
For actual motion (V > 01, this condition may always be satisfied by 

choosing a track of suitable curvature if the function a(t) is given, or 
by choos’lng the function a(t) if the motion on the trajectory of con- 
straint is given. The coincidence of equations indicates a coincidence 
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of motions with like initial conditions and in particular the coincid- 

ence of trajectories. From this it follows, by the way, that in the 

problems of both types the normal forces may be of arbitrary magnitude 

and may be even infinite, and that the trajectories, correspondingly, 

may have corners. This last circumstance is explained by the fact that 

the magnitude of normal forces is not connected in the problems 

considered, in contrast to real problems, to the increase of losses due 

to resistance. 

We will show now that the general problem formulated above is a 

degenerate one. To this end, we express the variation 8xi8 through 8x, 

and 6x,, i.e. through the variation of the curve yl. Integrating in 

general terms the linear variational equation associated with equation 

(1.1) along the solution of this equation, i.e. the curve y, which 

possesses an admissible curve y1 of its own projection and which 

satisfies the condition xl(o) = :I*' we obtain-an :xprzssion of the 

variation 8x, in terms of 62,, 6x,, 6x,, 8x?, x1, x2, x3 and the 
functions of xl' x2, x3 ( a dot indicates differentiation with respect 

to t 1. Substituting I = 1, we obtain 8x1* = 6x1(1). Transforming terms 

with S;,, S;, through integration by parts, using equation (1.1) and the 

end conditions at A, and B,, we obtain the sought expression for the 

variation of the functional 

We note that it is valid everywhere because of the condition Xi f 0. 

Since the integrand does not contain ?1,g2,'jc' , we have in fact a special 

degenerate case of the variational problem [ I. 'Ibe corresponding Euler 3 

equation, as is known, may have no solution in the region uI. Therefore, 

the solution of the problem should be sought by the method of direct 

investigation of the variation. 

2. It is not difficult to convince oneself, through direct verifica- 

tion, that the expression of the variation (1.9) may be written down in 

terms of a line integral, with weight kW (where M is an arbitrary 

point of the curve y 1, as a function of the scalar product of the dis- 

placement vector d,, transformed by a matrix H, and the vector 6, of the 

variation of the point on the curve yl, i.e. 
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Subscript 1, as before, will indicate the projection on the plane 

x2’ x3 of corresponding quantities in space. 

We note that the left-hand side of (1.1) represents the scalar 
product X * d where X = (Xl, X2, X3>, and d = (dnl, dx,, dx?), such that, 
if relations (1.1) are satisfied, the vector d is in the plane rr, which 
is orthogonal to X. Let o Wbe the local angle determined by TT and the 
space angle w’(M), and its projection on the plane n n3 be oI (MI. 
Obviously, the admissible, piecewise smooth curves wik ends A, and 8, 

in the region aI will be then those whose tangents at each point MI 
belong to the bundle o,(M). Let I”(P) be a curve originating at point 
P, which satisfies equation (1.1) and is in contact with the left 
boundaries of the angles o(M), where M cc I” (PI. We shall gall then the 
projection of this curve r”(P) the left internal boundary, and the 
analogous curve for the right boundaries of the angles o(M) will be 
called the right internal boundary q (PI. 

‘Ihe matrix H is skew synnmtric and rotates the vector do through 
an angle n/2 in the clockwise sense, if the quantity @‘C(M) > 0, and in 
the counterclockwise sense if @‘(M(M) < 0 and makes it zero if Q’(M) = 0. 
bet us consider the initial portion of the admissible curve yi. It is 

situated within the angle co,(A). To fix the ideas, let @’ > 0 in a given 
point A. Then, since the function Q’(M) is continuous, it will be 
positive in points within a sufficiently small portion AM of the curve y. 

‘Ihe vector Hdl on the corresponding portion AIMI (Fig.3) is directed 
to the right of the curve yl, Using the fact that the portion AIMI is 
situated within the angle o,(A) and the angles in the neighboring points, 
we shift it towards the vector lid,, i.e. we direct the vectors 6, to the 

Fig. 3. 
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right in the portion AIM,, and in the remaining points of the curve y, 

we put 6, equal to zero. ‘Ihen the angle between the vectors H d, 
and S, will be acute, Hd,.6, > 0 in the whole portion A,M, and 

It follows, that it is possible to “improve” the curve y1 by means 

of such a variation. 

‘Ihe improvement of the initial portion of y1 through the described 
variation may be carried out as long as it does not pass along the 
internal boundary q’(A). Further variation is not possible: the curve 

Yl will cease to be an admissible one. Inasmuch as the given reasoning 
may be applied also for the neigbboring portions of the curve y1 as 
well, for which 3’ > 0, the sought solution of the problem lT1, beginning 

at the point Al, should pass along the internal boundary r,“(A). 
(Analogously, if $‘(A) < 0, the solution should pass along the left 
internal boundary). 

It may happen, however, that Q’(C) = 0 for some point C,C r{’ and 
cb’ < 0 for points of this boundary further along, i.e. the curve rl” 
will encounter a surface @‘(x1, x2, x3 1 = 0. We construct then the 
angle o1 (Cl. If the projection q$ of the curve 4, determined by the 
point C and equations @‘(x1, x2, 
angle o1 (Cl, 

x3 1 7 0 and (1.11, passes outside the 
then @’ < 0 everywhere within the angle o1 (C) and the solu- 

tion I’1 from the point C, on, should pass then along the left boundary 
r1 ‘(Cl, being broken at the point C, through an angle o1 (0. 

Let now the curve q51 pass within the angle o (C), that is to the left 
of the curve rl“, along which the motion took p i ace so far. If a small 
portion CIMl of admissible continuation of y1 from the point C1 on, is 
taken to the right of the curve $1, that is in the region a’ < 0, then 
the vectors Hdlwill be directed to the left, to the curve $; if on the 
other hand the portion CIM1 is taken to the left of the curve &, then 
the vectors Hd,will be directed to the right, that is again towards the 
curve q$. 

4 

‘lhis means that shifting zhe portion CIMl towards the curve 
1, we will. obtain necessarily in both cases 8xlB > 0, and the portion 

VP 6 cannot be improved any further. Therefore, the solution r1 will 
again be broken at the point C, and pass from it along the curve +‘1 as 

long as it is an admissible one. 

It may also happen, however, that in some point N1 the curve +1 
will touch one of the boundaries of the angle o,(N) and then ceases to 
be an admissible one (its points Ml, following the point N,, will be 
outside the angle o,(M)). Then it can be shown by variation, that from 
the point N1 on, the solution r1 should pass through that corresponding 
point N of the internal boundary, which was touched by the curve +1 
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at the point R1. If, however, the curve 4 remains an admissible one 

after the contact, the solution r1 continues to pass along this curve. 

Furthermore, the exceptional case is possible, when @‘(A) = 0. ‘Ihen 

two alternatives present themselves. Ihe first occurs when the point A 
is ~aJ,ogous to the point C, which we already discussed. In the second 
case, which is essentially different, the curve #1 is admissible, but 
@’ > 0 is to the right of 4 and cp’ < 0 is to the left of $+, such that 
the vectors Hd, are directed not towards the curve 4 but away from it. 
It can be shown then that the curve +I corresponds not to a maximum but 

. . 
to a minimum xTB and that, under the conditions of the absence of 
multiple points [of multivaluedness] on admissible curves, the maximum 
will correspond to one of the internal boundaries for the point A 
(which one in particular is cleared up by direct verification). 

It is obvious that the solution lT1 may pass only through those points 

M1 of the curves q$, rl’, I’, “, for which admissible end conditions of 
motion exist, i.e. the curves M,B,.. But, sooner or later, the solution 
on one of these curves gS, , rl or IY1’: will encounter a point I) such 
that the point B, will be on one of the internal boundaries r2 Dl t or 
r ” (D) and for points M,, 
this boundary, (Fig.4). As 

following D, the point B, will be beyond 
a result, the curves MIB1 will cease to be 

admissible ones. In this case, with the aid of variation, it is possible 
to show that the solution r1 must pass along a portion DIB1 of those 
boundaries l?,‘(D) or l?,“@), on which the point B, happened to be, and 

has to terminate at the point B,. (In a special case, the portion DIB1 
may be equal to zero). 

From the solution obtained it may be seen that is can consist only of 
portions of the curves +,I’,‘,l’,“, following each other in a definite 
sequence. Inasmuch as all the conceivable cases of passing from one 
portion to the next were considered, the solution obtained is a general 

one. It is obvious that it always exists, provided at least one 
permissible curve A,B, exists. 



28 Y.A. Egorov 

The maximum problem is solved analogously to the minimum problem. 

In this manner, having found the surface @(xl,x2,r3) = 0, and depart- 

ing from point A,WB always can find the solution lYI with the aid of the 

method described above. 

Remarks. 1. Xt is easily observed that the method of solution 

described above is also applicable if the point Bi is not fixed, but a 

curve p 1 xz fr 1, x3 @ 1) is given, on which it must be chosen in such a 

manner that the quantity x~B be a maximum. 

Suppose that for an arbitrarily fixed point PifP some best ourve y 

is obtained. Through variation of the point J3, we obtain a variation in 

form of a sum of integral and non-integral terms, whereby in varying the 

end pi. obviously, only the part DIBl of the solution r1 will be 

changed. The solution of the problem with a moving end, obviously, is 

determined by the condition of mutual compensation of the integral and 

non-integral terms for an infinitely small displacement of the end, 

2. The equation ~(xi,x2,x3) = 0, as it follaws frown (2.1). is an 

analog of Euler equation for the degenerate problem considered. There- 

fore, the curves 4 satisfying the equations CD” = 0 and {I. 1) represent 

the essence of the extremafs analogy. This analogy is also confirmed by 

the fact that they are the same for the corresponding degenerate grob- 

lems. In fact, in the variation expression for the corresponding problem 

of the extremum SC 2, the expression v analogous to w. must be 

obviously, obtained from (1.10) only by an interchange of subscripts one 

and two. But such an interchange, as a direct verification shows, yields 

an expression vcoinciding with @’ or differing only by a sign. Inas- 

much as equation (X.1) is the same for both problems, the extremals 

analogies coincide also. They differ from the usual extremals (solutions 

of usual Euler equations) by the fact that their projections, in general, 

do not pass through given points A1 and B1, and their values are not 

sufficient for the construction of a solution of the degenerate varia- 

tional problem. 

3, Let us atudY the case W 3 0. If the condition is considered con- 

cerning the complete integrability of Pfaff’s equation Cl.If, that is 

the condition of the existence of its integral in the form FCxix2x3t = 

c(where c = const), then this condition turns out to be precisely the 

equality (0’ = 0. From the relation F t c, xi may be expressed through 

x2 and x 3, whereby for various values of the oonstant c we obtain 

different surfaces of the family xi = x~L~,x~~ c). obviously, fully 

determined surfaces x i = x1( x2,x7, c,,) and xi = x1 (‘t2,x3, cg) are passin$ 

through points A and B. In this case the coordinates x2B , x3B of the 

point By determine uniquely the quantity %rB , independent Iy of the form 

of the admksible curve yi- [This is confirmed atso by the identical 

vanishing of the variation Eirlg >. As a result, all the curves are seen 
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to be equivalent to each other and the problem of the calculus of varia- 

tions loses its meaning. 

Fig. 5. Fig. 6. 

4. Let us apply the stated method to the case when the angle oi s 2n 

and the function a depends only on x2 and x 3’ In this case, it is not 

necessary to consider three-dimensional geometrical figures and we con- 

fine ourselves merely to the discussion of their p:ojections on the 

plane ~2, x3. The factor k(M). entering the expression for the variation, 

which depends essentially on the position of the curve y in space, does 

not preclude such a simplified discussion because of its determined 

sign. The simplicity of the investigation is based here on the fact, 

that the sign of the function @‘(x 2, x3) at the point Ml of the curve y, 

does not depend on the quantity x1, that is on the preceding behavior of 

this curve. Therefore, the curve @’ = 0 on the plane x2, x3 may be 

indicated beforehand and it will be the same for all admissible curves 

y1* If the curve a’ = 0 intersects a given domain oi, it subdivides it 

into subdomains v > 0 and @’ < 0. If, however, it does not intersect ui, the sign 

of Qb’ within al does not change. Let us consider this last case first, 

since it is the simpler one. To fix the ideas, we assume @’ > 0 within 

ai, (Fig.5). Then. as it follows from Section 2, any curve yl, connect- 
ing the points A1 and B1 should be varied to the right in order to 
obtain a maximum. Improving yi through such a variation, we arrive at a 
curve, coinciding with the portion AICIBl of the boundary ul ‘. This 
curve represents the solution of the maximum problem on x lB, because it 
can no longer be improved. Analogously, the solution of the minimum 

problem is represented by the portion AIDIBl of the boundary olo. 

If @’ < 0 within oi then AICIBi corresponds to a minimum, and AIDiBl 

to a maximum. 

To obtain ‘the maximum xiB in the case when the curve @” = 0 inter- 
sects the domain ui, through variation of an arbitrary admissible curve 

yi to the right in the sub-domain @’ > 0 and to the left in the 
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sub-domain v < 0 (as is indicated by arrows in Fig.6) we find, that the 
solution is represented by the curve AICIDIB1 (it is impossible to 
improve this curve further). Analogously, the solution of the minimum 
problem zIB is represented by the curve AIDICIB1 . 

5. Let us consider now that special case of the foregoing, when the 
functions X2/X1 and X3/X1 do not depend on x1. Then, obviously, we can 
simply say that in equation (1.1) X1 = 1, while x2 and x3 do not depend 
on x1. In this case, through integration along the curve yl, it is 
possible to obtain not only the variation 

> (8x, dx, - 6x8 dxz) 

Yl 
but also the functional itself 

%B = zlA + 
s 

[M (%a, Q) ha + h’ (X2, z8) dz81 

Yl 

where M=- X2, N=- X3, It differs only through the constant additive 
term %lA from the degenerate functional of the most simple problem [3 I. 
Considering the domain u1 as being given by a portion of the strip 
a < x2 < b within non-intersecting curves x3 = fI (x,), x3 = f*(x,)* 
(Fig.7). and applying the result obtained above, the solutions for the 

Fig. 7. 

maximum and the minimum x IB can be obtained. For example, if @’ < 0 
below the curve @’ = 0, and if the problem is for the maximum xl3 we 
obtain, as is easily verified, the solution AICIDIBl, represented in 
Fig. 7. 

It is easily seen that if the strip a < x2 < b is not bounded from 
above and below, only one of the two possible problems has a solution: 
the maximum problem, if @’ < 0 below the curve 0’ = 0 (Fig. 7). and the 
minimum problem. if w > 0 below this curve. Obviously, this result does 
not depend on the location of the points A1 and B1 on the straight lines 

X2 = (I and x2 = b. 

6. In the case when the points A1 and B1 are both on the curve @‘-0. 
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this curve, obviously, represents the solution of the more simple 

problem for the degenerate functional and within the class of functions 

which do not possess corner points. For example, for the integral 

J = 
s 

[-(z + y)” dx + sin ay dy] 

YI 

where y1 connects the points Ai(O.0) and B1 (1.-l), (Fig. 8). we have 

> = 2 (z + Y) 

Since v < 0 is below the curve @’ = 0, there exists the SolUtiOn of 

the problem for the maximum J. It consists only of the portion of the 

curve w = O(y = - x). since A1 and B1 are located on this curve. Let 

us verify, for example, that the straight line AIBl is better than the 

curve AICIBl, which differs from it in the interval (0.1) by the varia- 

tion 8y = kx. where k = const. We obtain (Fig.8) 

Fig. 8. 

-1 

J IA&l = sin ay dy 

.,~1,,&1=(4,+ 

A, 

+(o+ I1 

-l+k 

Cl 

=(-c+ -I(-‘SiQaydy)+ 

0 

sin aydy 
> 

= J [A,&] - $ 

There results a J = - 1/3k* < 0, as was required. 

We have thus corrected an error contained in the text [3 I, in the 

first as well as in the second editions, which consists in the state- 

ment that the functional J does possess neither a maximum nor a minimum 

for O<lc1\ <n. This error has arisen because, in calculating the 

increment a J. 

(Fig. 8). 

the integral along the portion CIBl was not considered. 

‘7. The representation of the variation in the form (2.1) is interest- 

ing because it is conserved also for an arbitrary number n of free 
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functions in Pfaff’s equation (1.1). Thereby, the rank of the matrix H 
is equal to n + 1. An investigation of this case and its application to 
the problem of optimum rocket launching through choice of functions 
Cl(t) and p(t) is easily carried out. 

3. As an example, we solve the problem of maximum speed for equation 
(1.5) formulated in Section 1. We put 

St = 0, 21 = zi, z,=t, zs=y 

x 1=v, X 2=2’(‘Q-@I), x,=pg, CD’=-@ (3.1) 

From formulas (2.1) and (1.10) we obtain 
T 

b = k(t)@Gydt s ( cD=pg [y +v g - $ g _+ _w) (3.2) 
iI 

For simplicity, the law of resistance is approximated by a straight 
line. Ihen 

c,@ = av - b, ‘p (v, Y) = g H (y) (av - b) (3.3) 

(F is the area of the midship). putting H(y) = e(-ky) and P = const =Po, 

we obtain 

ff (v, Y) = 5 e-ku (av -b) (a+!& fi+, Y,,= 2) 

Substituting 4 (u,y), we obtain 

~(v,t,y)=k$-{[av+(av-b)(l+$-)]e-kv-_}p (3.4) 

From the equation Cp = 0 we see that for an arbitrary v > 0, there 
will always be one such value y, that the brace will be zero. As a 

65 

cl 
25 880 500 700 800 ffuo 1mu 

Fig. 9. 

consequence, equation @ = 0 determines a real curve in the 
& 

lane u,y 

(see Fig.91, which corresponds to a = 100 m/set, b = 2 x 10 m*/sec*, 

k - 10-4m-1, fi = lo* kg/m* and the value K-I = 3300 sec*/m* 1. Since 

p(t) f 0, the indicated curve does not depend on t and is determined 
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exclusively by the adopted law of resistance, the law of decrease of 

density with altitude and the parTter K, which depends on absolute 
constants and the construction parameters. If, considering g = const, 
we solve equation Cp = 0 with respect to y, we obtain 

33 

Y = + In {p + (uv -b) (i + ?I] X} 

I’he different values K of the point (uoryo), corresponding to the 
initial value of the portion of the trajectory to be varied, may be 
situated in the general case either below the curve @ = 0, that is to 
say, in the region tf, > 0 as well as ahove, in the region Q, < 0. 

Let us consider the motions (curves yl) in the plane (ty) (Fig. 10). 
‘Ihe curves l? ’ (A) and lYI” (A) are drawn in this plane. ‘Ihey correspond 
to a vertica 1 climb and a vertical fall, i.e., to most rapid change of 
velocity with time. All curves for other motions starting at point A 
are located between the curves r1 and I’,“. 

Lt?t us consider first the case Q(A) > 0, that is @‘(A) < 0. In 
accordance with Section 2, the solution of the problem will leave point 
A along the left intekal boundary r,‘(A), that is, will start with a 
vertical climb. During the vertical climb, as may easily be verified, Q, 
decreases, i.e. the point M(u, t,y) approaches the surface Q = 0. Assume 
that Q1 (ttf, t,,yc) = 0 at some point C. Inasmuch as on the plane ty the 
curve sb,, which is determined by the point C and which satisfies the 
equations @= 0 and (1.5), passes within the angle o,(C), the solution 
must pass, in accordance with Section 2, along the curve &. 

Depending upon the parameters 7’ and yk, the curve 4, may come to 

touch, as may be easily verified, either the boundary y = yk# or the 
boundary t = T. In the first case, the point B, is on the internal 
boundary rl’(D), ( h w ere D is the point of contact with the boundary 
y = yk of the region of possible motion), and then the solution must 
terminate by the horizontal portion D,B,. Let us indicate this solution 

by % h (Fig.101 corresponding to the vertical (u) start and horizontal 
(h) t&&nation of motion. In the second case, the solution, in order to 

reach point B, in accordance with Section 2, must leave the curve #Jo 
at such a point D, that the point l3, can be reached along the internal 
boundary corresponding to this point. Such a boundary in the problem 
considered may obviously be only r,‘(D). ‘Ihe solution obtained may be 
indicated analogously by SV, v (Fig. 10). 

In the case when Cp (A) < 0, that is Q’(A) > 0, the solution must 
leave the point A along the right internal boundary rl’* (A), that is, 
must start by a horizontal flight. Thereby u increases and y = yo, such 
that it, increases in accordance with (3.4). Let Q = 0 in some point C. 

Then, by analogy with the foregoing, the solution must again pass along 
the curve qS1 , determined by the point C and equations (1.S) and Qt = 0. 
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The solution, obviously, may terminate again by either a horizontal 

or a vertical flight and, by analogy to the foregoing, we obtain the 

cases S, ,, and S,,V for the horizontal start of motion (Fig. 101. ‘Ihe 

solution’of the problem obtained, obviously, may be considered as being 

general. Through a change of the constants of the problem, the region 

of the motion along the curve q!~~ may be altered, and in the cases SV h 

and ‘h,v may even vanish (when the points C, and D, coincide). The ’ 
portions D,B, and AIC1, obviously, may vanish in all four cases. 

We note that under certain conditions (for example, if b = 0,~ z p,), 
it may happen that the motion in accordance with the law @= 0 becomes 

vertical at some point N and becomes impossible any further (the curve 

$I crosses the curve r1 4 N) 1. In this case, in accordance with Section 

2, the solution must correspond to a vertical motion. If it leads to the 

intersection of the line y = yk, it must change to a horizontal and 

terminate for t = T; and if it leads to the intersection of the straight 

line t = T, then it cannot correspond to a solution. The solution, in 

accordance with Section 2, will be terminated by vertical motion, 

beginning at some point D, preceding N,, corresponding to reaching an 
altitude yk for t = T,. 

The solution obtained is applicable, in accordance with Section 1, 

to the determination of optimum trajectory of free flight, and also to 
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the optimum choice of the shape of the launching track of given altitude 
yk for launching of a cosmic [space ] rocket. For launching from a state 

of rest (ZJ, = 01, as is seen from (3.3), we have (P’(A) > 0, for an 

arbitrary power law for drag and arbitrary thrust regime P(t). ‘Ihis 

means that only cases S,,” and S, h (Fig. 10) may be realized, that is, 

the motion will begin along a horizontal portion, changing at v = vC 

into a climb in accordance with the law W = 0. 

If, in the formulation of the problem, the quantity y is nqt bounded 

from below, then, as is easily checked by the method of Section 2, the 

launching tracks, which descend first and then rise again, will be even 

more advantageous than launching tracks without a downward portion, 

while a vertical start will be relatively disadvantageous. 

Remarks. 1. Inasmuch as for problems corresponding to the one con- 

sidered (namely, the problem of maximum altitude yk = y(T) for 

prescribed terminal velocity and the problem of minimum time T for 

prescribed yk and vk ), the equation a= 0 and the boundary curves 

r’(A) and r(A) (curves of vertical climb and fall) remain the same as 

in the problem considered, the corresponding optimum motions will 

consist of motions along the vertical and a motion in accordance with 

the law @ (u, t,y) = 0, and also. possibly. of horizontal motions at the 

ends, if the conditions of the problem so require (for the problem of 

min T this is confirmed by the recent paper by A.Miele [ 4 ] ). 

2. If 8 is the angle between the velocity and a local horizon, the 

solution of the considered and the assaciated problems may be general- 

ized almost without changes to the case of a central gravity field 

(merely the centrifugal term in (1.3) has to be added, which does not 

influence the resulting discussions and solutions). 

3. In obtaining the solution, it was assumed, only for simplicity, 

that 
z.& = av - b, g = cons& p = poedku, P = const , 

For real laws of resistance and functions g(y), p(y) and P(t), as 

well as taking into account counter pressure, the surface @ (u, t,y) = 0 

resembles the one considered; the solution is obtained in the same 

fashion and yields results which are qualitatively analogous to the ones 

presented. However, the practical significance of the indicated example 

is not large. In Section 1, it was pointed out that in the idealized 

problems considered there, in contrast to real ones, the occurence of 

sharp turns in the trajectory and even of corner points is not connected 

with losses due to resistance. This explains why the solution has corner 

points, and this in turn diminishes considerably the practical sig- 

nificance of the example discussed, since in real problems concerning 

free flight and climb on a launching track, the decrease of the radius 

of curvature of the trajectory down to zero, as may be verified, leads 
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to partial or complete loss of speed due to fast increase of resistance. 

Therefore, the solutions of idealized problems cannot be close to the 

solutions of real problems (the same can be said about the solution of 

A. Miele 14 I). 
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